API
Documentation for VarianceComponentModels.jl's types and methods.
Index
VarianceComponentModels.TwoVarCompModelRotateVarianceComponentModels.TwoVarCompVariateRotateVarianceComponentModels.VarianceComponentModelVarianceComponentModels.VarianceComponentVariateVarianceComponentModels.fit_mle!VarianceComponentModels.fit_reml!VarianceComponentModels.mle_fs!VarianceComponentModels.mle_mm!
Types
#
VarianceComponentModels.VarianceComponentModel — Type.
VarianceComponentModel stores the model parameters of a variance component model.
Fields
B:p x dmean parametersΣ: tuple ofd x dvariance component parametersA: constraint matrix forvec(B)sense: vector of characters'=','<'or'>'b: constraint vector forvec(B)lb: lower bounds forvec(B)ub: upper bounds forvec(B)
#
VarianceComponentModels.VarianceComponentVariate — Type.
VarianceComponentVariate stores the data of a variance component model.
Feilds
Y:n x dresponsesX:n x ppredictorsV: tuple ofn x ncovariance matrices
#
VarianceComponentModels.TwoVarCompModelRotate — Type.
TwoVarCompModelRotate stores the rotated two variance component model.
Fields
Brot: rotated mean parametersB * eigveceigval: eigenvalues ofeig(Σ[1], Σ[2])eigvec: eigenvectors ofeig(Σ[1], Σ[2])logdetΣ2: log-determinant ofΣ[2]
#
VarianceComponentModels.TwoVarCompVariateRotate — Type.
TwoVarCompVariateRotate stores the rotated two variance component data.
Fields
Yrot: rotated responseseigvec * YXrot: rotated covariateseigvec * Xeigval: eigenvalues ofeig(V[1], V[2])eigvec: eigenvectors ofeig(V[1], V[2])logdetV2: log-determinant ofV[2]
Functions
#
VarianceComponentModels.mle_fs! — Function.
mle_fs!(vcmodel, vcdatarot; maxiter, solver, qpsolver, verbose)
Find MLE by Fisher scoring algorithm.
Input
vcmodel: two variane component modelVarianceComponentModel, with
vcmodel.B and vcmodel.Σ used as starting point
vcdatarot: rotated two varianec component dataTwoVarCompVariateRotate
Keyword
maxiter::Int: maximum number of iterations, default is 1000solver::Symbol: backend nonlinear programming solver,:Ipopt(default) or:Knitroqpsolver::Symbol: backend quadratic programming solver,:Ipopt(default) or:GurobiorMosekverbose::Bool: display information
Output
maxlogl: log-likelihood at solutionvcmodel:VarianceComponentModelwith updated model parametersΣse=(Σse[1],Σse[2]): standard errors of estimateΣ=(Σ[1],Σ[2])Σcov: covariance matrix of estimateΣ=(Σ[1],Σ[2])Bse: standard errors of estimateBBcov: covariance of estimateB
#
VarianceComponentModels.mle_mm! — Function.
mle_mm!(vcmodel, vcdatarot; maxiter, qpsolver, verbose)
Find MLE by minorization-maximization (MM) algorithm.
Input
vcmodel: two variane component modelVarianceComponentModel, with
vcmodel.B and vcmodel.Σ used as starting point
vcdatarot: rotated two varianec component dataTwoVarCompVariateRotate
Keyword
maxiter::Int: maximum number of iterations, default is 1000qpsolver::Symbol: backend quadratic programming solver,:Ipopt(default) or:GurobiorMosekverbose::Bool: display information
Output
maxlogl: log-likelihood at solutionvcmodel:VarianceComponentModelwith updated model parametersΣse=(Σse[1],Σse[2]): standard errors of estimateΣ=(Σ[1],Σ[2])Σcov: covariance matrix of estimateΣ=(Σ[1],Σ[2])Bse: standard errors of estimateBBcov: covariance of estimateB
Reference
- H. Zhou, L. Hu, J. Zhou, and K. Lange (2015) MM algorithms for variance components models. http://arxiv.org/abs/1509.07426
#
VarianceComponentModels.fit_mle! — Function.
fit_mle!(vcmodel, vcdata; algo)
Find MLE of variane component model.
Input
vcmodel: two variane component modelVarianceComponentModel, with
vcmodel.B and vcmodel.Σ used as starting point
vcdata: two varianec component dataVarianceComponentVariate
Keyword
algo::Symbol: algorithm,:FS(Fisher scoring) for:MM
(minorization-maximization algorithm)
Output
maxlogl: log-likelihood at solutionvcmodel:VarianceComponentModelwith updated model parametersΣse=(Σse[1],Σse[2]): standard errors of estimateΣ=(Σ[1],Σ[2])Σcov: covariance matrix of estimateΣ=(Σ[1],Σ[2])Bse: standard errors of estimateBBcov: covariance of estimateB
#
VarianceComponentModels.fit_reml! — Function.
fit_reml!(vcmodel, vcdata; algo)
Find restricted MLE (REML) of variane component model.
Input
vcmodel: two variane component modelVarianceComponentModel, with
vcmodel.B and vcmodel.Σ used as starting point
vcdata: two varianec component dataVarianceComponentVariate
Keyword
algo::Symbol: algorithm,:FS(Fisher scoring) for:MM
(minorization-maximization algorithm)
Output
maxlogl: log-likelihood at solutionvcmodel:VarianceComponentModelwith updated model parametersΣse=(Σse[1],Σse[2]): standard errors of estimateΣ=(Σ[1],Σ[2])Σcov: covariance matrix of estimateΣ=(Σ[1],Σ[2])Bse: standard errors of estimateBBcov: covariance of estimateB